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Experiments on leapfrogging internal solitary waves 

By P. D. WEIDMANY AND M. JOHNSON 
Department of Aerospace Engineering, University of Southern California,, 

Los Angeles, California 90007 
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Experiments on the resonant energy transfer between internal gravity-wave solitons 
travelling along neighbouring pycnoclines have been performed. Measurements of 
both amplitude and phase oscillations are found to be in qualitative agreement with 
theoretical predictions given in the companion paper by Liu, Pereira & KO (1982). 
Using averaged quantities to account approximately for wave-energy dissipation , the 
theoretical expression correlating the oscillation frequency with the density environ- 
ment parameters is reasonably well verified. A new three-soliton resonance requiring 
both upstream and downstream energy transfer has also been observed. 

1. Introduction 
The strong interaction between two Korteweg-de Vries (KdV) solitary waves 

travelling unidirectionally along a single density interface is now well understood. 
Of the three types of collisions cited by Lax (1968), the type (a) interaction between 
waves travelling at nearly the same phase speed is perhaps the most interesting. In  
this case the larger amplitude wave approaches but does not override the lead wave. 
Instead, the two peaks remain distinct throughout the interaction while the waves 
exchange amplitudes during the time they propagate in close proximity to one another. 
Once the energy transfer is complete, the larger-amplitude lead wave propagates per- 
manently away from the rear wave owing to its enhanced wave speed, and the only 
remnant of the collision is a small permanent phase shift incurred by each soliton. 
This energy exchange between two mode-one (single-hump) waves of elevation with 
initial speeds C, > C, is illustrated in figure 1. All three types of interactions discussed 
by Lax (1968) have been documented by Weidman & Maxworthy (1978) in their free- 
surface wave experiments , and similar interactions are easily demonstrated in the 
laboratory for mode-two (bulge) internal waves travelling along a single pycnocline 
in a density-stratified fluid. A characteristic feature of such interactions is the forward 
or upstream transfer of energy from the initially larger trailing soliton to the smaller 
lead soliton. 

Let us consider now an interaction wherein two mode-two internal solitary waves 
move unidirectionally, but along vertically separated pycnoclines as depicted in figure 
2, again with a relatively small difference in their phase speeds. Intuition suggests 
what would happen in the limiting cases of very small or large separation between 
the density interfaces. In  the latter case the two solitary waves would propagate 
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FIGURE 2. Sketch illustrating the downstream energy transfer between mode-two internal-wave 
solitons travelling along neighbouring pycnoclines. The wave system is moving from left to 
right at the group velocity. The times t,, ..., t, denote successive times during the resonant 
cycle. 

independently, the faster overtaking the slower without energy exchange; in the 
former caae the two interfacial regions would overlap, forming essentially single 
pycnocline, and the interaction would be characterized by a single upstream energy 
transfer from the lagging to the leading disturbance. In  the intermediate cme, where 
the pycnoclines are distinctly separated but not too far apart, a new phenomenon is 
possible: energy can be transferred rearward or downstream from the larger, tempor- 
arily leading wave to the smaller, temporarily lagging one on the neighbouring pyc- 
nocline. Then, in areference frame following the mean velocity of the system, the two 
waves will exchange their horizontal positions owing to the growth and relatively 
greater speed of the trailing soliton as illustrated in figure 2. Under such 'resonance' 
conditions in an ideal fluid, energy will be exchanged alternately between solitary 
waves in the downstream direction, and successive upstream hops will ensue in leap- 
frog fashion. 

The present experiment to investigate this novel feature was motivated by the 
nonlinear analysis of Liu, Kubota & KO (1980) (hereinafter referred to aa LKK), 
although studies of resonant interactions for linear internal waves date back to Eckart 
(1961). Denoting a typical soliton wavelength by A and the separation between pycno- 
clines by H, the investigation in LKK dealt with pycnocline separations for which 
H/A = O(1); the numerical integrations of the governing pair of coupled evolution 
equations for this parameter regime clearly exhibit the resonant energy transfer 
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described above. In  the companion paper to this study Liu, Pereira & KO (1982) 
(hereinafter referred to as LPK) have considered the case of weak coupling that 
occurs when H / h  9 O(1). Similar leapfrog oscillations are predicted, and explicit 
asymptotic formulae are derived relating the leapfrog oscillation frequency to the 
ambient-density-field parameters and wave amplitudes for the special cme of Joseph 
(1977) solitons. 

A description of the experimental facility and measurement techniques is given in 
Q 2. In  Q 3 we present and discuss the measured results, including an observation of a 
three-soliton interaction, and concluding remarks are relegated to 3 4. 

2. Apparatus and data acquisition 
Our experimental facility, the important features of which are sketched in figure 3, 

consisted of a wave-generation unit followed by 10 m of rectangular Lucite channel 
20 cm wide by 30 cm deep. The channel was levelled to about f 1.6 mm over its 
entire length with the aid of adjustable screws supporting the working sections. 

For all experiments reported here, the ambient stratification consisted of three 
uniform layers of saline water separated by two pycnoclines a t  the one-quarter and 
three-quarter fluid-depth levels. The density variation through each layer closely 
resembled a hyperbolic-tangent density profile. In each case the total depth waa very 
nearly 30 cm, with densities p = 1.02, 1-05, and 1.08 g/cmS in the upper, middle and 
lower layers respectively. The mixing of the different fluids at their interfaces during 
the filling process was minimized by slowly metering the fluid for each new layer 
through porous floating rafts. The lower pycnocline waa on the average 11 yo thicker 
than the upper one owing to diffusion during the two hours that elapsed before the 
formation of the upper pycnocline. 

After considering several wave-generation methods, it waa determined that 
nearly identical mode-two waves could best be initiated by the simple collapse of two 
separately mixed regions. (Detailed studies of waves formed in this manner can be 
found in Amen & Maxworthy 1980; Maxworthy 1980.) In figure 3 we see that the wave 
generator consisted of two mixing chambers separated by a horizontal splitter plate 
1-25 cm thick located at mid-depth and extending some 40 cm beyond the end of a 
removable barrier. A top plate of the same length wetted the upper surface to inhibit 
the production of free-surface waves during barrier removal, and to ensure a sym- 
metric collapse of the upper and lower mixed-regions. The rear walls of the mixing 
chambers were sealed around their perimeter with porous weather-stripping so that 
they could be positioned in situ fore and aftto provide a range of initial mixed volumes. 
Also shown in figure 3 are the mixing propellers with shafts sealed at ,  and extending 
through, the rear wall for exterior drive using a variable-speed motor. 

2.1. Description of wave generation and interaction 

After some experimentation we found that leapfrog interactions were readily obtained 
with nearly identical initial conditions (i.e. equal chamber volumes and mixedness, 
and nearly equal pycnocline thicknesses) and rapid barrier removal so that the 
gravitational collapse of each region began almost simultaneously. Under these 
conditions the two lead solitons were observed to initially travel in unison: both 
collapsed regions formed nearly identical lead waves with similar dispersive tails; after 
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FIGURE 3. Sketch of the experimental tank and wave generator. 

leaving the splitter plate the solitons continued to travel together (presumably 
because of a symmetric interaction between the wave systems), each vying for the 
lead position. The lower wave generally pulled ahead first because, owing to the 
greater thickness of the lower pycnocline, it had a slightly larger linear long-wave 
phase speed for the otherwise equal density jumps and symmetric location of the 
pycnoclines about mid-depth (see (3.6)). Once in the lead, it began to transmit energy 
backwards to the upper wave, which grew and subsequently initiated the first hop. 
Although the solitons diminished in amplitude significantly during their flight down 
the 10 m tank, the leapfrog oscillations continued unabated since the effects of dissi- 
pation acted equally on each wave and preserved the crucial small difference between 
their phase speeds. 

Coloured dye mixed uniformly with the fluid in each chamber allowed the following 
observations. The gravitational collapse formed gravity currents which evolved into 
mode-two solitary waves carrying mass from the original mixed volume in the form 
of embedded counter-rotating fluid cells. Such waves characterized by internal 
recirculating flow were observed only at large amplitudes, and hence are labelled 
strong solitons. The viscous self-erosion of the cells continually deposited the trans- 
ported fluid in a thin sheet behind the propagating waves. All traces of reoircula- 
tion disappeared before or at the end of the first complete hop; from this point 
onward the waves lacked closed streamlines and are labelled weak solitons. (Similar 
observations of the formation of a strong soliton from the collapse of a single mixed- 
region and its evolution into a weak soliton are reported by Maxworthy (1980).) 

Large-amplitude waves were generated in most cmes to ensure good wave crest 
and amplitude definition for the two or three complete hops that transpired before 
the waves reached the end of the test facility. Including the return path from the 
end wall back to the wave generator, as many as five complete hops were observed, 
but the returning wave crests were often too small and flat to be accurately followed 
and recorded. 

We note that the presence of the top plate in contact with the free surface did in 
fact inhibit the formation of surface gravity waves. However, a slow free-surface 
drift just above the upper solitary wave was evident, clearly a manifestation of mass 
conservation in the stratified fluid system. 
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2.2. Measurement techniques 
The waves were visualized with the aid of neutrally buoyant tracer droplets composed 
of a kerosene-Freon mixture coloured with red dye and located at preselected levels 
above and below the centre of each pycnocline. Droplet-size control and prevention 
of density deterioration (through the rapid evaporation of the more volatile Freon) 
were attained by pressurizing the mixture in a closed reservoir and ejecting it through 
a rake of twelve small hypodermic tubes immersed just below the free surface and 
spanning the breadth of the channel. The droplets ranged from 0.6 to 3 mm in dia- 
meter, and, after falling to their predetermined depth, gave the appearance of a carpet 
of red beads. 

Ambient density profiles were measured with conductivity probes and associated 
electronics. The sensor consisted of a platinum coated metallic cathode bead (about 
0.16 mm diameter) fixed at the drawn tip of a long slender glass cylinder. The cylinder 
enclosed a wire filament that conducted the signal to ah output connector at the 
opposite end, and a 2.4 mm stainless-steel rod served as the anode. Both cathode and 
anode elements were mounted parallel to one another (about 1 cm apart) on a vertical 
traversing mechanism. This arrangement was devised in an attempt to provide nearly 
identical conducting paths through the fluid in both the measurement and calibration 
environments. A practical discussion of the operation of these probes and their 
inherent problems is given by Koop (1976). 

The conductivity probe was used initially to  trace out the uncalibrrtted density 
distribution through each pycnocline in order to locate approximately the kerosene- 
Freon beads just inside the ‘corners’ of each hyperbolic-tangent profile. Also, either 
before or after each experiment, a vertical density profile and calibration with 7 or 
8 accurately measured reference densities waa taken for each layer separately. This 
separate recording of the two pycnocline profiles was necessary to maintain reasonable 
measurement accuracy (dp/p = 0.0015) owing to the extreme nonlinearity of the 
density-voltage curve a t  low densities. 

Amplitude and trajectory data were obtained photographically. A permanent grid 
(1.0 cm vertical x 2.0 cm horizontal) marked with waterproof ink on the inside wall 
of the channel provided a fixed reference frame. Two Nikon camerm were mounted 
on a trolley in a vertical plane, one at each pycnocline level. As the trolley was pushed 
alongside the channel to follow the interacting waves, relays fired by a pulse from a 
function generator simultaneously triggered the two cameras, and time intervals 
between successive photographs were measured with a Hewlett-Packard timer- 
counter. The double-camera system was devised to eliminate errors in amplitude 
measurement due to parallax. 

Wave trajectories were obtained from enlarged projections of the negatives by 
measuring the wave-crest position at each time interval. The wave amplitudes, 
defined as one-half the difference between the maximum droplet separation produced 
by a passing wave and the undisturbed droplet separation, were also recorded. Tests 
showed that amplitudes obtained from droplets located 6 yo of the maximum slope 
thickness above or below their nominal positions yielded little measurable difference. 
It was concluded, therefore, that the tracer droplets must have been positioned near 
the extrema of the spatial eigenfunction for each mode-two wave, and hence the data 
reported here are indicative of the maximum wave amplitudes. Measurement errors 
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F~UURE 4. Photographic sequence exhibiting a solitary-wave resonant interaction over one 
complete cycle of oscillation taken from a cine film strip. The waves propagate from right to 
left, and time increases from (a) to ( j )  with a constant time interval of 20 s between frames. 
The numbers at the bottom of each photograph represent the relative downstream position 
in dm. 

in the position of the wave crests depend on the sharpness of the peaks, and ranged 
from approximately 2 to f 6 mm. Absolute amplitude-measurement errors are 
estimated to be f 0-75 mm, although the relative error for measurements in a given 
experiment may be considerably less. 

The qualitative features of a typical interaction can be seen in figure 4, which com- 
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prises a sequence of photographs taken from a single film strip over one complete 
cycle of wave oscillation. The solitons propagate from right to left, the constant time 
interval between photographs is 2 0 s ,  and the average pycnocline thickness is 
h II 2.0 cm. The effect of wave amplitude on the oscillation period is clear: the first 
half of the cycle from (a)-@) occurs in approximately 60 s, while the remaining half- 
cycle from (d)-( j)  takes approximately 120 s. 

- 

3. Results and discussion 
A total of eleven experiments were performed, for which all requisite data were 

successfully obtained. The average time to stratify the tank, inject the kerosene- 
Freon droplets, run the interaction experiment, and measure the density profiles 
was approximately twelve hours. Generally only two interaction sequences were 
recorded for a given stratification set-up, because a continuous merging of the 
kerosene-Freon beads degraded the visual definition of the isopycnal surfaces to a 
point that precluded accurate wave-position and amplitude mertsurement. We only 
report data for wave interactions that occurred during the transit down the tank so 
as to exclude amplitude and phase variations resulting from the endwall collision. 

In  the presentation of data we adhere to the co-ordinate system and terminology 
defined in figure 3. The end wall is located 9.79 m from the co-ordinate origin at the 
end of the splitter plate. Data corresponding to upper and lower solitary waves will 
be represented by upward- and downward-pointing triangles respectively. 

3.1. Density projles 

Sample ambient-density distributions are displayed in figures 5 (a, b). The dotted 
lines are a linear least-squares fit to the data on the inner 50 yo of the profiles used 
to define the maximum slope thicknesses 2 4  (i = 1, 2 corresponding to the upper 
and lower pycnoclines respectively) of each pycnocline. The solid circles represent 
the measured location of the kerosene-Freon droplets. As mentioned previously, 
the saline solutions were carefully set at po = 1-05 g/cm3, p1 = 1.02 g/cm3 and 
pz = 1.08 g/cm3. Thus the density jumps across each layer were nearly identical for 
all experiments: Ipo -pil = 2Ap = 0.030 g/cm3. Denoting y = yi rts the centre of each 
pycnocline, the distributions in figure 4 can be approximated by the hyperbolic- 
tangent profiles 

(3.1) 

in which upper and lower signs correspond to i = 1 and 2 respectively. A summary 
of the ambient-density-field parameters for each experiment is presented in the first 
five columns of table 1. Runs 1-3 each had a separate density calibration taken soon 
after completion of the experiment, and for the remaining run pairs (4,6), (6,7), (8,9) 
and ( 1 0 , l l )  only a single calibration was taken between the two runs. A comparison 
of test profiles taken before and after an experiment yielded typically a 4 Yo increase 
in the maximum slope thickness caused by the redistribution of fluid from each 
mixed region into their respective pycnoclines. Hence the measured values of maxi- 
mum slope thicknesses 2 hi for runs 173, 4, 6, 8, and 10 have all been multiplied by 
0-96 to account for this growth. 

P = Po + APP f tanh [(Y - Yi)/~i l l ,  
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FIGURE 5. Measured density profiles for the upper (a) and lower (b) pycnoclines corresponding to 
run 2. The dotted line represents a fitted curve to the inner 50% of the profile defining the 
maximum slope, and the filled circles locate the positions of the kerosene-Freon droplets. 

Run no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

15.26 
14.89 
15.13 
15.25 
15.25 
15.16 
15.16 
15.22 
15.22 
14-79 
14-79 

7-92 
7.72 
8.04 
8.04 
8.04 
7.99 
7.99 
7.98 
7.98 
7.71 
7-71 

7.20 
7.76 
7.19 
7-09 
7.09 
7.17 
7.17 
7.10 
7.10 
7.82 
7.82 

4.41 
2-80 
2.82 
4.01 
4.18 
3.62 
3.78 
4-31 
4.49 
2.61 
2.72 

4.54 
3.48 
3.48 
4.16 
4.34 
4.20 
4.38 
4.79 
4.99 
2.94 
3.06 

3.37 
2.84 
2.86 
3-28 
3.36 
3.15 
3.20 
3.36 
3.40 
2.77 
2-81 

3.36 
3.07 
3.07 
3.26 
3.31 
3.28 
3-32 
3.41 
3.45 
2-90 
2.95 

TABLE 1. Environmental parameters and linear mode-two wave speeds 
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3.2. Wave amplitudes and phme 
Amplitude measurements for run 1 corresponding to a relatively thick pycnocline 
experiment are presented in figure 6. The measured values for each wave a, and a2 
are seen in figure 6(a) to oscillate around some average, monotonically decreasing 
amplitude. This mean amplitude 8, approximated by a third-order least-squares 
Chebyshev-polynomial fit to the data normalized over the interval [ - I, 11, is shown 
by the dotted line. In an attempt to remove the effects of viscous dissipation we have 
calculated the difference amplitudes for the upper and lower waves 

Aai = ai-Z (i  = 1,2), (3.2) 

and these are plotted in figure 6 (b). Note that the attenuation of the peak amplitude 
of ha4 is small compared with the attenuation of a for these relatively large-amplitude 
waves. 

The individual (xi, t )  wave trajectories plotted in figure 6 (c )  show little hint of 
oscillation because the phase excursions are relatively small. The dotted line drawn 
through these measurements is a fourth-order Chebyshev-polynomial fit to the 
normalized data, and approximates the trajectory traced out by the system’s centre 
of maas f travelling at the ‘group’ velocity C,. The spatial phase of each wave relative 
to this centre of mass, 

(3.3) 

is plotted versus time in figure 6 (d)  and exhibits nicely the spatial oscillations of the 
slowly varying solitons. Note that the phase excursions increase monotonically as 
the mean amplitude 3 decreases. 

A comparison of certain features of the interaction with theoretical examples given 
by LKK and LPK is made with the aid of figures 7 and 8, which present evolution 
plots of Aai for two experiments along with their total phase defined as 

CT = XI - x,. (3.4) 

This comparison can only be considered qualitative for two main reasons. First, the 
characteristic non-dimensional amplitudes Coo/& defined in Q 3.4 and listed in table 3, 
are substantially greater than allowed by the weakly nonlinear theory. Secondly, if 
we denote the distance from a pycnocline to its nearest fluid boundary by Di (i = 1,2) 
(see figure 3), then D, = D, = H for the examples given in LKK and LPK, while the 
data reported here correspond to D, 21 D, 21 &H. (We do not anticipate that the free 
surface in our experiment used in lieu of the fixed upper boundary considered in the 
theoretical studies will yield qualitative differences in the flow fields, except in a small 
neighbourhood near the upper stress-free surface.) 

The data in figures 7 and 8 correspond to relatively thick and thin pycnocline 
experiments, respectively. In comparing these results with figures 2 ( c ,  d )  in LKK and 
figure 3 in the companion paper LPK, we note distinct similarities. First, although the 
peak-to-peak values are nearly equal, the difference amplitudes ha, and Aa, do not 
vary about a common level. Also, both theory and experiment show that Aai and u 
are approximately 90’ out of phase. Furthermore, both the amplitude and period of 
the phase measurements in figures 7 (a) and 8 (a) are continuously increasing with 
time. This can be considered a direct consequence of the slowly decreasing amplitudes 
(cf. figure 6) of the solitons, in qualitative agreement with the theoretical trends 
predicted in LPK. 
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FIGURE 6 (a) and (b ) .  For description see opposite. 

3.3. Wave speeds 

The numerical computations in LKK show that the nonlinear group velocity C, of 
the wave system satisfies the inequality 

co < c, < c, (3.5) 

where co and are the average linear and nonlinear speeds of the interacting waves. 
Kubota, KO & Dobbs (1978) have derived a general asymptotic expression for the 
linear long-wave phase speed of solitons propagating along single thin pycnoclines 
bounded above and below by rigid horizontal boundaries. Using their result for the 
hyperbolic-tangent profiles in (3. 1), one obtains the following estimate for mode-two 
waves : 

valid for hi/Di, hi/Li < 1, where L, = H + D, and L, = H +  D,. Thus in applying 
(3.6) we have assumed that the bounding walls for each soliton are the free surface 
and channel floor. The linear speeds calculated in this manner are listed in table 1. 
The fact that the upper boundary is really a free surface can have little effect on the 
linear wave speed since the speeds calculated for an upper free surface and for an upper 
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FIQTJRE 6. Measured interaction data corresponding to run 1. (a) Amplitude evolution of the 
upper (A) and lower (v ) waves; the dotted line is a fitted curve representing the mean amplitude 
7i. (b)  Evolution of the difference amplitudes. (c) Upper and lower wave trajectories; the dotted 
line is a fitted curve representing the wave centre 5. (d) Evolution of the phase of each soliton 
relative to the wave centre. 

solid boundary differ only by an amount of order (Ap/po)S. An alternative method of 
approximating the linear wave speeds, that of solving the eigenvalue problem for a 
broken-line density-profile model, has also been carried out. The results for runs 1-1 1 
calculated in this manner are all within 4 yo of those obtained using (3.6). 

The group velocity C, = &/dt can be readily determined from the slope of the fitted 
curve 5(t) describing the trajectory of the wave centre. A plot of the time evolution 
of C, for run 1 corresponding to figure 6 is given in figure 9 (a).  In  figure 9 (b)  the velo- 
cities are cross-plotted against the normalized amplitude E/E at each corresponding 
time. These curves suggest that the group velocity does asymptote to c0 in the limit 
of zero wave amplitude, and the left-hand inequality in (3.5) is indeed satisfied. 
Further supporting evidence that the group speed always exceeds the average linear 
wave speed is given in table 2, which compares the calculated values of co with the 
terminal (smallest) value of C, in each experiment. Having neglected to measure the 
nonlinear speed of single, non-interacting solitons, we are unable to test the right- 
hand inequality in (3.5). 
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FIGURE 7. Evolution of (a) the difference amplitudes and (a) the total phese for run 8 correspond- 
ing to relatively thick pycnoclines. The data sequence used to determine the average period is 
indicated. 

3.4. Oscillation frequency 
Even in controlled fluid-dynamical experiments, a proper comparison of results with 
theoretical predictions for ideal fluid phenomena is often frustrated by unavoidable 
dissipation mechanisms. Strong-interaction experiments of the present kind are 
particularly susceptible to the action of viscosity because of the long timescales 
involved. Although the solitons may be considered qumisteady, their amplitude 
variations are not negligible during the time of leapfrog oscillation. Thus, in order to 
make a quantitative comparison with inviscid theoretical results, we take simple 
averages. 

Average oscillation periods 7 for each experiment were determined from the total 
phtlse plots. In  choosing the range of data from which to obtain this average, the 
following criteria were observed. 

(i) When two solitons evolved on a given pycnocline, only data for which the 
trailing soliton fell back permanently more than four wavelengths (to be defined) 
behind the oscillating pair was admitted. 

(ii) Generally only weak soliton data were considered; in a couple of instances it 
was necessary to include strong soliton data, but these comprised just a few points a t  
the beginning of a data sequence. 

(iii) Only zero-crossings or peak-to-peak values were used to calculate the period of 
oscillation. 
Criteria (i) and (ii) usually admitted only the downstream three-quarters of the data 
set, and criterion (iii) sometimes determined whether a full period (figure 7 b )  or only 
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FIUURE 8. Evolution of (a) the dif%rence amplitudes and (a) the total phase for run 11 corns- 
ponding to relatively thin pycnoclines. The data sequence used to determine the average period 
is indicated. 

a half-period (figure 8b) of oscillation data was allowed. The median amplitude, 
denoted by Zo, for the sequence of data considered wm used to characterize the inter- 
action, and is listed in non-dimensional form 31 table 3 along with the measured 
periods. Defining the wavelength A as the soliton width a t  half-amplitude, we choose 
the characteristic wavelength X o  to be the average of the upper and lower soliton 
wavelengths corresponding to Zoo. The measured values of LPK's separation parameter 
A = (Xo/H)2 are also listed in table 3. 

Equation (18) of LPK for the oscillation frequency is strictly valid for Joseph solitons 
(Dl = D, = H) that are weakly nonlinear (Zo/z 4 1) and widely separated (A < 1). 
In our experiment, although D, N D, N #H, we nevertheless anticipate that the 
increased separation distance will have only a weak influence on the soliton shape 
and speed. Thus, assuming the waves are characterized by Joseph solitons, we have 
used Zo and the environmental parameters given in table 1 to calculate the average 
Joseph wave-width parameter z0 = &(Sol + aO2) from equation (4b) of LPK by Newton 
iteration. These values, which necessarily lie in the interval [0, n], are listed in table 3. 
In figure 10 we have plotted the experimental oscillation frequencies uexp = T / %  

against the theoretical values wth calculated from equation (18) of LPK using the 
measured parameters listed in tables 1 and 3. Although the range of comparison is 
not large, we note reasonably good agreement in light of the sometimes O(1) values 
of Z 0 / E  and A. We have omitted error bars because of the unknown effects of averaging 
and of assuming Joseph solitons. No apparent trend of the data with either the 
amplitude or separation parameters was discerned. 
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FIQLRE 9. Group-velocity variation for run 1. (a) Group velocity as a function of time. 

(b) Group velocity plotted versus the non-dimensional mean wave amplitude. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

3-31 
2.97 
2.97 
3.27 
3.33 
3.22 
3.26 
3.38 
3.43 
2-83 
2.88 

3.50 
3.20 
3.08 
3.27 
3.39 
3.30 
3.46 
3.42 
3.53 
3.29 
3.43 

TABLE 2. A comparison of the smallest measured group velocity (C,),, and the 
average pycnocline wave speeds calculated from (3.6) 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

130 
140 
180 
196 
220 
198 
168 
176 
129 
240 
200 

0.47 
0.65 
0.61 
0.39 
0-48 
0.68 
0.68 
0-38 
0.51 
0.83 
1.02 

0.47 
0.35 
0.53 
0.39 
0.46 
0.68 
0-46 
0.60 
1.07 
0.16 
0.35 

1.88 
2-28 
2.26 
1-82 
1.93 
2.09 
2.06 
1.74 
1.90 
2.47 
2.66 

TABLE 3. Measured periods and median non-dimensional amplitudes used to calculate the Joseph- 
soliton wave-width parameter $. Also inoluded are the measured estimates of the non-dimensional 
separation parameter A = (XO/H)a. 

wth ( W s )  
FIQURE 10. Oscillation-frequency measurements wexp compared with the theoretical prediction 

wth (equation (18) of LPK) computed from the parameters listed in tables 1 and 3. 

In the limit A + 0,  equation (18) of LPK reduces to the oscillation frequency for 
Benjamin-Davis-Ono (BDO) solitons, 

when C,, # C,, (cf. equation (21) of LPK, for which C,, = C,, = C,). A comparison of 
the measured frequencies with this asymptotic result computed from the parameters 
in table 1 is presented in figure 11. The disparity between theory and experiment in 
this figure gives a clear indication that the asymptotic limit was not obtained in the 
present experiment, as expected from the values of A listed in table 3. 
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0 0.05 0.10 0.15 

*DO (rad/s) 
FIQVRE 11. Oscillation-frequency measurements wezp compared with the asymptotic 

prediction wBDo (3.7) computed from the parameters listed in table 1. 

3.6.  A three-soliton resonance 

In  some cases two solitons ordered in amplitude evolved along each pycnocline from 
the mixed-region collapse. One such experiment resulted in a three-wave interaction 
between the two lead solitons and the nearest trailing soliton, the remaining soliton 
having been left behind. The difference amplitudes and phases for this interaction 
are presented in figure 12. Here the mean amplitude and position Z have been taken 
as the least-squares fit through the three amplitude and three trajectory curves 
respectively. In figure 1 2 ( a )  the amplitudes are seen to decay more rapidly than in 
comparable two-wave interactions, and, again in comparison with similar two-wave 
interactions, a noticeably smaller group velocity was measured. Figure 12 (b) shows 
that the leapfrog oscillation occurred between the two trailing solitons, while the 
upper lead soliton always remained in front. Figures 12 (a, b) indicate that, while the 
lagging soliton on the upper pycnocline is 180’ out of phase with its leapfrog partner, 
it is also nearly out of phase with the lead soliton. Unfortunately, we did not measure 
density profiles for this case, but estimates based on the kerosene-Freon droplet 
separation levels give 2h, = 2.6 em and 2h, = 2.8 em. 
An explanation supporting the conjecture that the interaction might represent a 

three-soliton resonance is given with the aid of figure 13. The ideal waves are pictured 
travelling a t  the group velocity from left to right, with the initial configuration at  the 
instant t ,  corresponding to zero time in figure 12. At time t ,  energy is cascaded back- 
wards from the leading to the smaller trailing soliton on the upper layer, via the 
intermediate soliton on the lower layer. At  time t ,  the upper rear soliton has grown in 
amplitude at the expense of the two forward waves, and proceeds to hop past the 
lower soliton. A t  time t ,  energy from the now large intermediate wave is transferred 
simultaneously upstream to the lead wave and downstream to the soliton on the lower 
pycnocline. The forward wave is then ‘bumped’ ahead via the Lax type (a) interaction, 
and at time t, the second hop between the trailing solitons is initiated. At time t ,  the 
solitons have returned to their approximate initial relative positions. In  the actual 
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0 60 120 180 240 

t (s) 

FIGURE 12. Three-soliton interaction. (a) Evolution of difference amplitudes for the first-upper 
(A) ,  first-lower (v )  and second-upper ( A )  solitons. (b)  Evolution of the phase of each wave 
relative to the wave centre. 

experiment the amplitudes decrease owing to viscous dissipation with a consequent 
increase in the horizontal excursions between the waves. 

It appears that thisis the first reportedexampleof a solitoninteraction that combines 
both upstream and downstream energy transfer. Our conjecture is that the ideal 
(inviscid) interaction is not a simple resonance, but may fall into the category of a 
Fermi-Pasta.-Ulam (1 955) recurrence phenomenon. The time-scale for forward 
energy transfer between solitons propagating along the same pycnocline is faster 
than the rearward energy transfer between solitons on neighbouring pycnoclines. 
This disparity in the energy-transfer timescales, becoming more pronounced with 
increasing pycnocline separation distance, probably precludes a simple hop-bump 
hop repetition period, Other possibilities also exist, one of which is that the motion 
never repeats itself and hence is chaotic in the sense of strange-attractor dynamics. 

4. Concluding remarks 
In  the foregoing experiments the evolving wave profiles were symmetric and slowly 

varying for sufficiently small wave amplitudes. Asymmetric profiles, probably a 
direct consequence of the mutually perturbed pressure fields set up by each soliton, 
were evident early in the interaction when the amplitudes were large. Our observations 
suggest that the distortion scales approximately with Z/H.  

A curious irregularity was observed in runs 10 and 11, which represent the most 
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f l  

fl First hop 

FIQUBE 13. Illustration showing the energy exchanges that transpire during an idealized three- 
soliton interaction. The times t,, ..., ta denote successive times during a complete cycle. 

nonlinear (i?,,/z = O( 1)) interactions recorded. Here a flat spot in the difference ampli- 
tude curves (figure 8a)  appeared when the waves were most widely separated. The 
occurrence of the plateau was repeatable, and seems to be purely a large-amplitude 
effect. The fact that this anomaly is not reflected in the phase measurements (figure 
8b)  can be explained by the fact that the phase u is an integration (smoothing) of the 
amplitude, through the dependence of the nonlinear phase speed on soliton amplitude. 

In conclusion, our experiments have demonstrated that two solitons propagating 
unidirectionally along neighbouring pycnoclines will oscillate in both amplitude and 
phase if their wave speeds are closely matched. Using simple averages and the assump- 
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tion that the waves can be described by Joseph solitons, we obtain reasonably good 
agreement with the predicted oscillation frequency reported in the LPK companion 
paper, even for relatively large-amplitude waves. A three-soliton resonance necessitat- 
ing both forward and rearward energy transfer has also been observed and documented, 
perhaps for the first time. Although we suspect this interaction may represent a 
Fermi-Pasta-Ulam recurrence phenomenon, the exact nature of the resonance re- 
mains a subject for future study. 

The authors wish to express their appreciation for the initial experimental efforts 
of Dan Raferty in developing a viable two-soliton wave generator. We are indebted 
to A. K. Liu, N. Pereira and L. Redekopp for discussions relating to theoretical 
aspects of the problem. The assistance of our laboratory technician Casey de Vries 
is always much appreciated. This work was supported by the Office of Naval Research 
under Grant no. N00014-76-C-0211. 
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